
Evangelos Kranakis, School of Computer Science, Carleton University, Ottawa 1

DisplacingSensors: Coverage

and InterferenceProblems

By

Evangelos Kranakis

School of Computer Science

Carleton University, Ottawa, ON, Canada

Adhocnets 2014, Rhodes, Greece



Evangelos Kranakis, School of Computer Science, Carleton University, Ottawa 2

Why Displacement for Coverage and Interference?

• Consider a network of sensors employed in a terrain.

• In unfavourable terrains (e.g., presence of obstacles)

– coverage may be disturbed.

• Proximity may cause interference.

• Network connectivity/recovery requires that sensors must be

moved from their initial positions.

• There is a tradeoff between number of sensors and movement:

If you want to save on the number of sensors used you

will have to pay on the sensor movement and vice versa

if you want to save on the sensor movement you will

have to pay on the number of sensors!
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Motivation
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Why Monitoring: Sensors in a Vineyard

• Making Canadian “Ice Wine”.

• Very sensitive to temperature changes.

• . . . harvest late in the fall season and wait for the temperature

to drop to −7C!
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The Most Important Questions in ihe Beautiful Game!

• Did the Ball Cross the Line?

• Which Line?

• When?
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Sensor (Barrier) Coverage

• A geometric domain and n sensors in(out)side the domain.

• Sensors may not cover the (barrier of the) domain!

• We want to cover the (barrier of the) domain in the sense that

every point in the (barrier of the) domain is within the range of

a sensor.
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Coverage vs Barrier Coverage of a Domain

• There is a slight difference:

– In coverage the whole area of the domain needs to be

monitored;

– In barrier coverage only the boundary domain needs to be

monitored.

• If your goal is to monitor intruders the latter can be

accomplished more efficiently than the former.
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Coverage from a Sensor of Range r

• When coverage is on the plane:

r

the sensor covers a disc of radius r.

• When coverage is on a line:
r

the sensor covers a segment of length 2r.
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Questions: Movement for (Barrier) Coverage

• Geometric domain with a well-defined boundary; n sensors.

• Question: Do the sensors cover the domain?

• Question: Do the sensors cover the boundary?

• Question: If not, move the sensors from their original

positions to new positions to accomplish the task?

• Main Question: What’s the optimal cost of displacement?

NB: Cost can be distance, some power of distance, time, etc!
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Main Optimization Problem(s)

• Assume d(A, B) measures (some) cost from A to B.

• Sensor Displacement: when n sensors at initial positions

A1, A2, . . . , An move to new positions A′1, A
′
2, . . . , A

′
n,

the total displacement cost is
∑n
i=1 d(Ai, A

′
i), and

A

B

C

D

A"

A

B

B'

C

C'

D

D'

the max displacement cost is maxni=1 d(Ai, A
′
i).

• Optimization Problem: Minimize sum (or max) over all new

positions A′1, A
′
2, . . . , A

′
n which accomplish (barrier) coverage.
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Proximity and Sensor Interference

• Proximity between sensors affects their transmission and

reception signals and degrades network performance.

– The closer their distance the higher the resulting

interference and hence performance degradation.

• A critical value, say s > 0, is established and sensors are kept a

distance of at least s apart.

s
r

r

– Signals interfere during communication if distance is < s.
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Related Work
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Communication and Movement Algorithms (1/2)

• Deterministic Input

– How efficiently can you move the sensors?

∗ Minimize the energy

∗ Minimize the time

∗ Minimize the number of sensors moved

– How do sensors communicate?

∗ Global

∗ Local

• Some Recent Research in

– MOBICOM 06, COCOA 08 (TCS 09),

ADHOCNOW 09 & 10, WADS 2012, PODC 13, . . .
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Communication and Movement Algorithms (2/2)

• Random Input

– Type of distribution

– Relationship of sensor range and movement
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Model
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Random Model for Coverage

• Coverage Problem in the unit interval [0, 1]:

X1 X2 . . . Xn

Sensors are thrown randomly and independently with the

uniform distribution in the unit interval.

• X1, X2, . . . , Xn represent sensor positions.
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Random Model for Interference

• Interference Problem in the half-line [0,+∞):

X1 X2 . . . Xn

. . .

• Xi is the i-th arrival in a Poisson process.
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Coverage: Motivation (1/3)

• Throw n sensors of radius r := 1
2n at random in a unit interval.

• To ensure coverage of the interval they must be moved to

anchors ai = i
n + 1

2n , for i = 0, 1, . . . , n− 1.

– This is the worst-case total movement!

– The cost is roughly
√
n.

– Why?

• Do a simulation!

Adhocnets 2014, Rhodes, Greece



Evangelos Kranakis, School of Computer Science, Carleton University, Ottawa 20

Coverage: Motivation (2/3)

• Keep increasing the sensor radius.

– The bigger the radius the less the movement! Why?

• For n sensors of radius Θ( lnn
n ), w.h.p. no sensor needs to move!

• Why?

– The probability that no sensor drops inside a subinterval of

length x is (1− x)n.
x

0 1

– However,

(1− x)n =
(

1− xn

n

)n
≈ e−xn =

1

nc
,

for x = c lnn
n , where c > 0.
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Coverage: Prediction (3/3)

• Sensor movement as a function of the sensor range.

√
n

O(1)

Sensor Range r

Movement

lnn
n

1
2n

• The bigger the radius (range) the smaller the movement.
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Interference: Motivation (1/2)

• Throw n sensors at random in a unit interval. We want to

ensure no two sensors are at distance < s.

– To ensure no two sensors are at distance < 1
2n they must all

be placed to anchors ai = i
n + 1

2n , for i = 0, 1, . . . , n− 1.

This is the worst-case total movement! Why?

• Keep decreasing the interference distance s.

– The smaller the interference distance s the less the

movement! Why?

• In general,

Arrival Time of i+ 1st sensor−Arrival Time of ith sensor

are the interarrival times of the Poisson process.
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Interference: Prediction (2/2)

• Sensor movement as a function of the sensor distance.

√
n

O(1)

Movement

0
1
n

Interference Distance s

• The smaller the interference distance the smaller the

movement.
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Interference
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Displacement and Interference on a Line

• Assume that n sensors arrive according to a Poisson process

having arrival rate λ = n in the interval [0,+∞).

– What is the expected minimum total distance that the

sensors have to move from their initial position to a new

destination so that any two sensors are at a distance more

than s apart?
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Results on Interference

• We obtain tradeoffs between the interference distance s and the

expected minimum total movement, denoted by E(s) (see

Kranakis and Shaikhet [2014]).

Interference Distance s Total Displacement E(s)

s− 1
n ∈ Ω (n−α) , 2 ≥ α ≥ 0 Ω(n2−α)∣∣s− 1
n

∣∣ ∈ O (n−3/2) Θ(
√
n)

s ≤ 1
tn , t > 1 ≤ t2

(t−1)3
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Critical Regime

• On a line there is critical threshold around 1
n ,

1. for s below 1
n − 1

n3/2 , E(s) is a constant O(1),

2. for s ∈
[
1
n − 1

n3/2 ,
1
n + 1

n3/2

]
, E(s) is in Θ(

√
n),

3. for s above 1
n + 1

n3/2 , E(s) is above Θ(
√
n).

• Sensor movement as a function of the sensor distance.

√
n

O(1)

Movement

0
1
n

Interference Distance s

Sharp Drop
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Main Ideas
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For s above 1
n + 1

n3/2 , E(s) above O(
√
n)

• The proof of this result is based on the following:

Theorem 1 Assume that the interference value between

sensors is s.

1. If s− 1
n ∈ Ω(n−α) then E(s) ∈ Ω(n2−α), where 2 ≥ α ≥ 0 is

a real number.

2. In particular, if s− 1
n ∈ Ω(n−3/2) then E(s) ∈ Ω(

√
n).

Adhocnets 2014, Rhodes, Greece



Evangelos Kranakis, School of Computer Science, Carleton University, Ottawa 30

Basic Idea of Proof (1/2)

• Let the r.v. Di define the i-th sensor’s displacement.

• After the sensors move to their final destinations it must be

true that

Di+1 +Xi+1 ≥ Di +Xi + s,

for all 1 ≤ i ≤ n− 1, so as to ensure that the two sensors are at

least distance s apart.

• It follows that

E[Di+1] + E[Xi+1] ≥ E[Di] + E[Xi] + s.

• However, E[Xi+1] = i+1
n and E[Xi] = i

n .

• Therefore

E[Di+1] ≥ E[Di] + s− 1

n
,

for 1 ≤ i ≤ n− 1.
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Basic Idea of Proof (2/2)

• Repeating this inequality recursively we see that

E[Di+1] ≥ E[D1] +

(
s− 1

n

)
i,

for 1 ≤ i ≤ n− 1.

• So, the expected minimum total movement must satisfy

n∑
i=1

E[|Di|] ≥
n∑
i=1

E[Di]

≥ nE[D1] +

(
s− 1

n

)
n(n− 1)

2
. (1)

• Result follows easily from the observation |nE[D1]| is in

O(lnn).
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For s below 1
n − 1

n3/2 , E(s) in O(1) (1/2)

• The basic algorithm is the following:

Algorithm 1: Moving Sensors

1. Set M1 = 0;

2. for i = 2 to n do

3. move sensor Xi to new position Xi +Mi s.t.

4a. Xi−1 +Mi−1 ≤ Xi +Mi;

4b. Xi +Mi ≤ s+Xi−1 +Mi−1;

Adhocnets 2014, Rhodes, Greece



Evangelos Kranakis, School of Computer Science, Carleton University, Ottawa 33

For s below 1
n − 1

n3/2 , E(s) in O(1) (2/2)

• The proof of this result is based on the following:

Theorem 2 Assume the interference distance between sensors

is s. If s ≤ 1
tn then

E(s) ≤ min

{
t2

(t− 1)3
,
n− 1

2t

}
, (2)

where t > 1.

– This is basically a result about M/D/1 queues: M is the

Poisson arrival rate, D is deterministic (fixed sensor radius).
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Basic Idea (1/2)

• The queue

queue

arriving
customers

S 2S 3S
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Basic Idea (2/2)

• The upper bound t2

(t−1)3 uses queueing theory:

– We have a single-server service station in which customers

arrive according to a Poisson process having rate λ.

– Arriving customer served immediately if server is free; and

if not, customer joins the queue

– Busy period begins when an arrival finds system empty.

– Distribution of length of a busy period will be the same for

each such period.

– B is the r.v. denoting the length of a busy period, and

S the service time of the first customer in the busy period.
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For s ∈
[
1
n − 1

n3/2 ,
1
n + 1

n3/2

]
, E(s) in Θ(

√
n)

• The proof of this result is based on the following:

Theorem 3 (Critical Regime) Assume the interference

value between sensors is s. If
∣∣s− 1

n

∣∣ ∈ O (n−3/2) then
E(s) ∈ Θ(

√
n).
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Coverage
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Displacing for Coverage in [0, 1]

• n sensors with identical range r = f(n)
2n , for some f(n) ≥ 1, for

all n, are thrown randomly and independently with the

uniform distribution in the unit interval [0, 1].

• They are required to move to new positions so as to cover the

entire unit interval in the sense that every point in the interval

is within the range of a sensor.

• We obtain tradeoffs (see Kranakis et al. [2013]) between the

range r of the sensors and

– the expected min sum (denoted by E(r))

of displacements of the sensors required to accomplish this task.
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Results for the Unit Interval

Sensor Range r Total Displacement E(r)

1
2n Θ(

√
n)

f(n)
2n (f(n) ≥ 6) O

(√
lnn
f(n)

)
f(n)
2n (12 ≤ f(n) ≤ lnn− 2 ln lnn) O

(
lnn

f(n)ef(n)/2

)
√
n

O(1)

Sensor Range r

Movement

lnn
n

1
2n

Sharp Drop
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Main Ideas
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Displacing to Fixed Anchors

• First a tight bound on the displacement:

Theorem 4 Assume that n mobile sensors are thrown

uniformly and independently at random in the unit interval.

The expected sum of displacements of all n sensors to move

from their current location to anchor locations i
n − 1

2n , for

i = 1, . . . , n, respectively is Θ(
√
n).
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Displacement Algorithm 1

• How do you move the sensors when r = f(n)
2n ≥ 1

2n?

• Displacement Algorithm 1

1. Divide the interval into subintervals of length 6 lnn/n;

2. If there is a subinterval with fewer than lnn sensors then

use the standard algorithm that moves all n sensors to

positions that are equidistant and stop;

3. Otherwise, in each subinterval choose d6 lnn/f(n)e (≤ lnn

since f(n) ≥ 6) sensors at random and move the chosen

sensors to equidistant positions f(n)/n apart;

• How good is this algorithm?

Adhocnets 2014, Rhodes, Greece



Evangelos Kranakis, School of Computer Science, Carleton University, Ottawa 43

Length Contraction Lemma

• Lemma 1 (Length Contraction) Assume that m sensors

are thrown randomly and independently with the uniform

distribution on an interval of length x. The sensors are to be

moved to equidistant positions (within this interval) at distance

x/m from each other. The total expected movement of the

sensors is Θ(x
√
m).
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Idea of Proof of Lemma 1

• Consider m sensors in the interval [0, x] (of length x).

• Multiply their coordinates by 1/x to normalize the problem

over the unit interval.

• By our previous result the total movement in the unit interval

is in O(
√
m).

• Now “scale this back” by multiplying by x and we get x
√
m,

which is the desired result.

Adhocnets 2014, Rhodes, Greece



Evangelos Kranakis, School of Computer Science, Carleton University, Ottawa 45

Displacement due to Algorithm 1 (1/3)

• Theorem 5 Let r = f(n)/2n where f(n) ≥ 6, for all n. n

sensors of radius r are thrown randomly and independently

with uniform distribution on a unit interval. The total expected

movement of sensors required to cover the interval is

O(
√

lnn/f(n)).
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Displacement due to Algorithm 1 (2/3)

• There are two cases to consider

• Case 1: There exists a subinterval with fewer than lnn sensors.

– In this case the total expected movement is O(
√
n) by

Theorem 4.
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Displacement due to Algorithm 1 (3/3)

• Case 2: All subintervals contain at least lnn sensors.

• By the independence of sensor positions, the 6 lnn/f(n) chosen

sensors in any given subinterval are distributed randomly and

independently with uniform distribution over the interval of

length 6 lnn/n.

• By Lemma 1, the expected movement inside each interval is

O
(

(lnn/n)
√

lnn/f(n)
)

.

• There are n/(6 lnn) intervals and total expected displacement

O(
√

lnn/f(n)).

• Now use Chernoff bounds:

Claim 1 The probability that fewer than lnn sensors fall in

any subinterval is < 1/n.
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An Improvement

• The above theorem can be improved for large enough radii

using occupancy estimates:

Theorem 6 Let 12 ≤ f(n) ≤ lnn− 2 ln lnn, for all n. If n

sensors of radius r = f(n)/2n are thrown randomly and

independently with the uniform distribution on a unit interval

then the total expected movement of sensors required to cover

the interval is O
(

lnn
f(n)ef(n)/2

)
.

• The algorithm is as follows.
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Displacement Algorithm 2

• Displacement Algorithm 2

1. Divide the interval into subintervals of length 6 lnn
n ;

2. If there is a subinterval with fewer than lnn sensors then

use the standard algorithm that moves all n sensors to

positions that are equidistant and stop;

3. Otherwise, divide subintervals into “bins” of size f(n)
2n ;

(a) If the total number of empty bins over all subintervals is

greater than 4n
f(n)ef(n)/2 then use the standard moving

algorithm as above and stop;

(b) Otherwise, within each subinterval find a matching of

extra sensors to empty bins and move the sensors

accordingly;

Adhocnets 2014, Rhodes, Greece



Evangelos Kranakis, School of Computer Science, Carleton University, Ottawa 50

Open Problems

• Displacement cost may depend on

– terrain

– sensor speed

• More realistic models of interference

• Stronger models of coverage

• 2D
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Thank you!
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